Genus Ranges of Chord Diagrams.
نویسندگان
چکیده
A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.
منابع مشابه
Counting Non-Isomorphic Chord Diagrams
Different formulas counting families of non isomorphic chord diagrams are given : planar and toroidal ones and those of maximal genus. These formulas are obtained establishing results on the structure of the automorphism group of diagrams of a given genus.
متن کاملEnumeration of chord diagrams via topological recursion and quantum curve techniques
In this paper we consider the enumeration of orientable and nonorientable chord diagrams. We show that this enumeration is encoded in appropriate expectation values of the β-deformed Gaussian and RNA matrix models. We evaluate these expectation values by means of the β-deformed topological recursion, and – independently – using properties of quantum curves. We show that both these methods provi...
متن کاملTopological recursion for chord diagrams, RNA complexes, and cells in moduli spaces
We introduce and study the Hermitian matrix model with potential V(x)=x^2/2-stx/(1-tx), which enumerates the number of linear chord diagrams of fixed genus with specified numbers of backbones generated by s and chords generated by t. For the one-cut solution, the partition function, correlators and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, w...
متن کاملAnalytic Combinatorics of Chord Diagrams Analytic Combinatorics of Chord Diagrams Combinatoire Analytique Des Diagrammes De Cordes Analytic Combinatorics of Chord Diagrams
In this paper we study the enumeration of diagrams of n chords joining 2n points on a circle in disjoint pairs. We establish limit laws for the following three parameters: number of components, size of the largest component, and number of crossings. We also nd exact formulas for the moments of the distribution of number of components and number of crossings. Key-words: Analytic combinatorics, c...
متن کاملOn a Basis for the Framed Link Vector Space Spanned by Chord Diagrams
In view of the result of Kontsevich, [5] now often called “the fundamental theorem of Vassiliev theory”, identifying the graded dual of the associated graded vector space to the space of Vassiliev invariants filtered by degree with the linear span of chord diagrams modulo the “4T-relation” (and in the unframed case, originally considered in [7], [5], and [1], the “1T-” or “isolated chord relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of knot theory and its ramifications
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2015